Froemke – Math 95 – Spring 2011 – Project 2 – Project is due May 21
- If f(x) = 1/(x + 1) and g(x)= x2 . Give the following compositions:
a. f(g(x))
b. g(f(x))
c. f(f(x))
d. g(g(g(x)))
- Use the table to find the following:
t | f(t) | g(t) | p(t) |
0 | 0 | -2 | -10 |
1 | 2 | 5 | -5 |
2 | 4 | 10 | 0 |
3 | 6 | 13 | 2 |
4 | 8 | 16 | 4 |
10 | -20 | 22 | 22 |
12 | -10 | 15 | 25 |
15 | -3 | 8 | 28 |
- f(2)
- f(15) – g(15)
- (f-g+p)(3)
- (g*p)(1)
- (f/p)(2)
- g(f(2))
- (f o g)(2)
- f(p(0))
- p(f(1))
3) The DaveCo monthly revenue on car-painting robots is 5 million dollars per robot. The cost is (x2 + 6) million dollars, where x is the number of robots produced in a month. Remember: Profit is Revenue minus Cost.
a) What’s the DaveCo monthly profit on robots?
b) What’s the best number of robots to produce?
4) The number N of bacteria in a refrigerated food is given by
N(T)=20T2 - 80T+500; 2 < T < 14
where T is the temperature of the food (in degrees Celsius). When the food is removed from refrigeration, the temperature is given by
T(t)=4t+2; 0 < t < 3
where t is the time (in hours).
a) Find the composition of N(T(t)) and interpret its meaning in context of the problem.
b) Find the number of bacteria in the food when t=2 hours.
c) Find the time when the bacterial count reaches 2000.
5) One of the two functions below has an inverse:
f(x) = (x-1) / 2
g(x) = x2 – 5x + 6
a) Which one does not? Justify your answer.
b) Find the inverse of the one that does.
c) Verify that you’ve found the correct inverse by composing functions.
No comments:
Post a Comment